Getting Started with FLAC2D/FLAC3D
Online19 Nov 2024 - 20 Nov 2024
This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the graphical interface, documentation and the main modeling steps. Concepts are illustrated using a tunnel excavation example, from building the model geometry to results analysis. This introductory course provides the foundation for more advanced use of the software, which can be covered in more specific training modules.
Software Tutorials
FLAC3D 7 0 Cutting Tool Tutorial
This tutorial will show how to use the Plot Item Cutting Tool in FLAC3D 7. Creating cut plans is useful for seeing inside 3D model plots. FLAC3D cutting planes include a single-surface plane, a double-surface wedge, and a three-surface octant.
Working with Building Blocks in FLAC3D 6 (Part 2)
This video demonstrates filling the empty space between key model elements and out to the far field boundary using Building Blocks in FLAC3D 6.
An Introduction to Python Scripting: Part 3
Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 3 focuses on modules and packages, with a focus on NumPy and Matplotlib.
Technical Papers
Tunneldrivning i heterogena förhållanden
InledningProblem: Brist på erfarenhet av tunneldrivning i heterogena förhållanden med konventionell uttagsteknik (borrning och sprängning).
Mål: Fördjupa kunskapen och förståelse av brott och deformationsmönster vid dessa förhållanden.
GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden
We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.
Depressurising an Underground Ore Body at the McArthur River Mine in Northern Saskatchewan, Canada
Pre-mining depressurising of a deep ore body at the McArthur River mine in northern Saskatchewan was considered to decrease the risk associated with mining near 5 MPa water pressure and increasing the amount of ore that can be extracted.