This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensive understanding of each step involved, including model setup, boundary conditions, input signal application, and damping, to effectively analyze dynamic behavior in geotechnical simulations.
Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling.
In this tutorial we will demonstrate how to map a random point cloud with pore pressure values onto the grid points of a FLAC3D model using Python.
In this tutorial, we review how to automatically skin models, identify and group zone faces, and interactively select and group zones and zone faces. This tutorial also illustrates using the Model Pane to interactively add a shell structural element along a tunnel.
This tutorial reviews how you can generate movies from plots with FLAC3D and most Itasca software.
Assess the use InSAR technology for LKAB's purposes - as a replacement and/or complement to current GPS measurements.
The proliferation of mine pits that intersect the groundwater table has engendered interest in environmental consequences of the lakes that form after cessation of dewatering.
Abstract
A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.