FLAC3D 7.0 Geometry Mesh Tutorial

This tutorial demonstrates how to generate a 3D volume mesh from surface geometry imported from DXF or STL files. Both hexahedral-dominant and tetrahedral meshes can be generated automatically using the "zone generate from-geometry ..." command in FLAC3D 7. The results of various keywords are shown.

FLAC3D 6.0 Model Generation using the Building Blocks and Geometric Data Sets
PFC 7 Creation of a Synthetic Rock Mass (SRM) Specimen

This tutorial will guide you through how to create a fractured Synthetic Rock Mass (SRM) specimen.

On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions

This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.

Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions

We derive the relationships that link the general elastic properties of rock masses to the geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.

We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....