This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the graphical interface, documentation and the main modeling steps. Concepts are illustrated using a tunnel excavation example, from building the model geometry to results analysis. This introductory course provides the foundation for more advanced use of the software, which can be covered in more specific training modules.
Live Online Introductory Training Course.
November 14-18, 2022.
This tutorial illustrates how to generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.
The Python programming language is embedded inside FLAC3D 6 and extended to allow FLAC3D models to be manipulated from Python programs. This webinar recording provides a brief introduction to Python scripting and includes many examples of using Python with FLAC3D.
Analyze the initial stress state in the central and southern areas of Stockholm for the Metro to Nacka and Southern Stockholm.
This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.
The realism of Discrete Fracture Network (DFN) models relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. In this study, we introduce correlations between fractures by enhancing the genetic model (UFM) of Davy et al. [1] based on simplified concepts of nucleation, growth and arrest with hierarchical rules.